If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2-56x+73=0
a = 10; b = -56; c = +73;
Δ = b2-4ac
Δ = -562-4·10·73
Δ = 216
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{216}=\sqrt{36*6}=\sqrt{36}*\sqrt{6}=6\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-56)-6\sqrt{6}}{2*10}=\frac{56-6\sqrt{6}}{20} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-56)+6\sqrt{6}}{2*10}=\frac{56+6\sqrt{6}}{20} $
| -14.7=y/5-2.2 | | 2m+2.56=6.56 | | m-5=4 | | 3z+5=8(6-5z) | | -3x+3(3x+17)=99 | | 2t-431=335 | | z+0.5=-5.03 | | 2(2.5w-8)=6.5w | | 17+18p=647 | | 956=56+30y | | 2/y+7=10 | | d/31-4=3 | | 5-2x-10=-15 | | 4.4=7+n | | 8+14s-7=8s+31-4s | | 12y-69=303 | | (4/5-3/10m=1/10m-4/5)10 | | 8(4K–4)=-5k–32 | | 697=7p+46 | | 2-(x+4)=2x-8 | | X+(x+10)+x+(x+10)=100 | | 8x+(2x+7)=44 | | 16a=2400 | | (4y+20)^(1/21)-(y+4)^(1/2)=6 | | v-23.7=-7.41 | | 3/200+x/50=7/100 | | 2-(x=4)=2x-8 | | 44=9x^2-2x | | 0.21x=-1.05 | | 5-2x-10=15 | | 0=9x^2-2x-44 | | x/3+4=5+x/3 |